Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.540
Filter
1.
J Oral Implantol ; 50(2): 75-80, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38702870

ABSTRACT

The most challenging and time-consuming step in the free gingival graft (FGG) for keratinized mucosa augmentation is the compression suture anchoring the FGG to the periosteum. This article proposed a novel "microscrew with tie-down sutures" technique to anchor the FGG to the recipient site without the traditional trans-periosteum suture. This patient's keratinized mucosa width (KMW) around the healing abutments of teeth #29 and #30 was less than 1 mm. After an apically positioned flap (AFP) was prepared, 2 microscrews were placed at the buccal plate of the alveolar ridge bone, which is the coronal margin of the AFP. Then, the sutures winded between the microscrews and the healing abutments to anchor the FGG. In conclusion, the "microscrew with tie-down sutures" technique offers a feasible and straightforward alternative for the trans-periosteum compression suture, mainly when the periosteum is fragile, thin, or injured.


Subject(s)
Gingiva , Suture Techniques , Humans , Gingiva/surgery , Periosteum/surgery , Female , Alveolar Ridge Augmentation/methods , Male
3.
Theranostics ; 14(6): 2544-2559, 2024.
Article in English | MEDLINE | ID: mdl-38646641

ABSTRACT

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Chondrocytes , Fracture Healing , Osteogenesis , Stem Cells , TRPP Cation Channels , Animals , Fracture Healing/physiology , Mice , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Chondrocytes/metabolism , Stem Cells/metabolism , Osteogenesis/physiology , Mice, Knockout , Chondrogenesis/physiology , Periosteum/metabolism , Osteoblasts/metabolism , Osteoblasts/physiology , Disease Models, Animal , Male
4.
Sci Rep ; 14(1): 9834, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684723

ABSTRACT

This study investigates the efficacy of a collagen membrane as a substitute for autologous periosteum in atelocollagen-assisted autologous chondrocyte implantation (ACI) using J-TEC autologous cultured cartilage (JACC®). Sixty-nine patients with knee joint chondral defects underwent ACI using JACC®-34 with periosteum-covered ACI (P-ACIs) and 35 with collagen-covered ACI (C-ACIs). Clinical outcomes were compared through patient-reported measures, International Cartilage Repair Society (ICRS) Cartilage Repair Assessment (CRA) scores at second-look arthroscopy one year postoperatively, and adverse event incidence. Postoperative subjective scores significantly improved up to two years, with no significant differences between P-ACI and C-ACI groups. However, C-ACI exhibited a lower adverse event rate (p = 0.034) and significantly higher ICRS CRA scores (p = 0.0001). Notably, C-ACI outperformed P-ACI in both femoral condyle and trochlea assessments (p = 0.0157 and 0.0005, respectively). While clinical outcomes were comparable, the use of a collagen membrane demonstrated superiority in ICRS CRA during second-look arthroscopy and adverse event occurrence.


Subject(s)
Chondrocytes , Collagen , Periosteum , Transplantation, Autologous , Humans , Chondrocytes/transplantation , Female , Male , Adult , Transplantation, Autologous/methods , Treatment Outcome , Cartilage, Articular/surgery , Knee Joint/surgery , Middle Aged , Arthroscopy/methods , Young Adult
5.
ACS Biomater Sci Eng ; 10(4): 2200-2211, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38447138

ABSTRACT

In the clinic, inactivation of osteosarcoma using microwave ablation would damage the periosteum, resulting in frequent postoperative complications. Therefore, the development of an artificial periosteum is crucial for postoperative healing. In this study, we prepared an artificial periosteum using silk fibroin (SF) loaded with stromal cell-derived factor-1α (SDF-1α) and calcitonin gene-related peptide (CGRP) to accelerate bone remodeling after the microwave ablation of osteosarcoma. The prepared artificial periosteum showed a sustained release of SDF-1α and CGRP after 14 days of immersion. In vitro culture of rat periosteal stem cells (rPDSCs) demonstrated that the artificial periosteum is favorable for cell recruitment, the activity of alkaline phosphatase, and bone-related gene expression. Furthermore, the artificial periosteum improved the tube formation and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs). In an animal study, the periosteum in the femur of a rabbit was inactivated through microwave ablation and then removed. The damaged periosteum was replaced with the as-prepared artificial periosteum and favored bone regeneration. In all, the designed dual-factor-loaded artificial periosteum is a promising strategy to replace the damaged periosteum in the therapy of osteosarcoma for a better bone-rebuilding process.


Subject(s)
Osteosarcoma , Periosteum , Rats , Humans , Animals , Rabbits , Chemokine CXCL12/genetics , Chemokine CXCL12/pharmacology , Calcitonin Gene-Related Peptide , Endothelial Cells , Bone Regeneration
6.
Clin Oral Implants Res ; 35(5): 573-584, 2024 May.
Article in English | MEDLINE | ID: mdl-38467593

ABSTRACT

OBJECTIVES: To introduce a modified guided bone regeneration (GBR) technique using intact periosteum and deproteinized bovine bone mineral (DBBM) for peri-implant augmentation and compare the clinical outcomes with those of conventional GBR. MATERIALS AND METHODS: Patients who received peri-implant augmentation in posterior sites between 2015 and 2021 were reviewed in this study. Group A was treated with a modified GBR technique, and Group B was treated with conventional GBR. For group comparison, propensity score matching was performed with a sensitivity analysis. The implant survival rate, dimensional changes in hard tissue, marginal bone loss (MBL), and peri-implant parameters were evaluated. RESULTS: In total, 114 implants from 98 patients were included. The implant survival rates were 95.74% in Group A and 95.00% in Group B during the follow-up period. At 6 months, the median horizontal thickness was recorded at 0.87 mm (IQ1-IQ3 = 0.00-1.75 mm) in Group A, exhibiting a relatively lower value compared to the corresponding measurement of 0.98 mm (IQ1-IQ3 = 0.00-1.89 mm) in Group B (p = .937). Vertical height displayed no statistically significant intergroup difference between the two groups (p = .758). The mean follow-up period was 25.83 ± 12.93 months after loading in Group A and 27.47 ± 21.29 months in Group B (p = .761). MBL and peri-implant parameters were comparable between the two groups. CONCLUSIONS: Within the limitations of this study, the modified GBR technique using intact periosteum and DBBM grafting might be a viable alternative to correct bone defects around implants in molar and premolar sites.


Subject(s)
Bone Regeneration , Guided Tissue Regeneration, Periodontal , Humans , Retrospective Studies , Female , Male , Middle Aged , Follow-Up Studies , Adult , Guided Tissue Regeneration, Periodontal/methods , Dental Implantation, Endosseous/methods , Periosteum/surgery , Alveolar Ridge Augmentation/methods , Alveolar Bone Loss/surgery , Treatment Outcome , Aged , Dental Implants
7.
J Biol Chem ; 300(4): 107158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479598

ABSTRACT

Single-cell RNA-seq has led to novel designations for mesenchymal cells associated with bone as well as multiple designations for what appear to be the same cell type. The main goals of this study were to increase the amount of single-cell RNA sequence data for osteoblasts and osteocytes, to compare cells from the periosteum to those inside bone, and to clarify the major categories of cell types associated with murine bone. We created an atlas of murine bone-associated cells by harmonizing published datasets with in-house data from cells targeted by Osx1-Cre and Dmp1-Cre driver strains. Cells from periosteal bone were analyzed separately from those isolated from the endosteum and trabecular bone. Over 100,000 mesenchymal cells were mapped to reveal 11 major clusters designated fibro-1, fibro-2, chondrocytes, articular chondrocytes, tenocytes, adipo-Cxcl12 abundant reticular (CAR), osteo-CAR, preosteoblasts, osteoblasts, osteocytes, and osteo-X, the latter defined in part by periostin expression. Osteo-X, osteo-CAR, and preosteoblasts were closely associated with osteoblasts at the trabecular bone surface. Wnt16 was expressed in multiple cell types from the periosteum but not in cells from endocortical or cancellous bone. Fibro-2 cells, which express markers of stem cells, localized to the periosteum but not trabecular bone in adult mice. Suppressing bone remodeling eliminated osteoblasts and altered gene expression in preosteoblasts but did not change the abundance or location of osteo-X or osteo-CAR cells. These results provide a framework for identifying bone cell types in murine single-cell RNA-seq datasets and suggest that osteoblast progenitors reside near the surface of remodeling bone.


Subject(s)
Mesenchymal Stem Cells , Osteoblasts , Osteocytes , Periosteum , Animals , Mice , Periosteum/cytology , Periosteum/metabolism , Osteocytes/metabolism , Osteocytes/cytology , Osteoblasts/metabolism , Osteoblasts/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Chondrocytes/metabolism , Chondrocytes/cytology , Single-Cell Analysis
8.
Dev Cell ; 59(9): 1192-1209.e6, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38554700

ABSTRACT

Bone is regarded as one of few tissues that heals without fibrous scar. The outer layer of the periosteum is covered with fibrous tissue, whose function in bone formation is unknown. We herein developed a system to distinguish the fate of fibrous-layer periosteal cells (FL-PCs) from the skeletal stem/progenitor cells (SSPCs) in the cambium-layer periosteum and bone marrow in mice. We showed that FL-PCs did not participate in steady-state osteogenesis, but formed the main body of fibrocartilaginous callus during fracture healing. Moreover, FL-PCs invaded the cambium-layer periosteum and bone marrow after fracture, forming neo-SSPCs that continued to maintain the healed bones throughout adulthood. The FL-PC-derived neo-SSPCs expressed lower levels of osteogenic signature genes and displayed lower osteogenic differentiation activity than the preexisting SSPCs. Consistent with this, healed bones were thinner and formed more slowly than normal bones. Thus, the fibrous periosteum becomes the cellular origin of bones after fracture and alters bone properties permanently.


Subject(s)
Cell Differentiation , Fracture Healing , Fractures, Bone , Osteogenesis , Periosteum , Animals , Periosteum/metabolism , Mice , Osteogenesis/physiology , Fracture Healing/physiology , Fractures, Bone/pathology , Fractures, Bone/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL , Bony Callus/metabolism , Bony Callus/pathology , Male
9.
Tissue Eng Part C Methods ; 30(4): 159-169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368556

ABSTRACT

Considerable research is being undertaken to develop novel biomaterials-based approaches for surgical reconstruction of bone defects. This extends to three-dimensional (3D) printed materials that provide stable, structural, and functional support in vivo. However, few preclinical models can simulate in vivo human biological conditions for clinically relevant testing. In this study we describe a novel ovine model that allows evaluation of in vivo osteogenesis via contact with bone and/or periosteum interfaced with printed polymer bioreactors loaded with biomaterial bone substitutes. The infraspinous scapular region of 14 Dorset cross sheep was exposed. Vascularized periosteum was elevated either attached to the infraspinatus muscle or separately. In both cases, the periosteum was supplied by the periosteal branch of the circumflex scapular vessels. In eight sheep, a 3D printed 4-chambered polyetheretherketone bioreactor was wrapped circumferentially in vascularized periosteum. In 6 sheep, 12 double-sided 3D printed 2-chambered polyetherketone bioreactors were secured to the underlying bone allowing direct contact with the bone on one side and periosteum on the other. Our model enabled simultaneous testing of up to 24 (12 double-sided) 10 × 10 × 5 mm bioreactors per scapula in the flat contact approach or a single 40 × 10 mm four-chambered bioreactor per scapula using the periosteal wrap. De novo bone growth was evaluated using histological and radiological analysis. Of importance, the experimental model was well tolerated by the animals and provides a versatile approach for comparing the osteogenic potential of cambium on the bone surface and elevated with periosteum. Furthermore, the periosteal flaps were sufficiently large for encasing bioreactors containing biomaterial bone substitutes for applications such as segmental mandibular reconstruction.


Subject(s)
Bone Substitutes , Periosteum , Sheep , Animals , Humans , Periosteum/pathology , Periosteum/physiology , Periosteum/surgery , Bone Regeneration/physiology , Osteogenesis/physiology , Biocompatible Materials , Bioreactors
10.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396834

ABSTRACT

The periosteum is known as the thin connective tissue covering most bone surfaces. Its extrusive bone regeneration capacity was confirmed from the very first century-old studies. Recently, pluripotent stem cells in the periosteum with unique physiological properties were unveiled. Existing in dynamic contexts and regulated by complex molecular networks, periosteal stem cells emerge as having strong capabilities of proliferation and multipotential differentiation. Through continuous exploration of studies, we are now starting to acquire more insight into the great potential of the periosteum in bone formation and repair in situ or ectopically. It is undeniable that the periosteum is developing further into a more promising strategy to be harnessed in bone tissue regeneration. Here, we summarized the development and structure of the periosteum, cell markers, and the biological features of periosteal stem cells. Then, we reviewed their pivotal role in bone repair and the underlying molecular regulation. The understanding of periosteum-related cellular and molecular content will help enhance future research efforts and application transformation of the periosteum.


Subject(s)
Bone Regeneration , Periosteum , Bone Regeneration/physiology , Osteogenesis/physiology , Stem Cells , Cell Differentiation , Tissue Engineering
11.
J Plast Reconstr Aesthet Surg ; 91: 83-93, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402817

ABSTRACT

BACKGROUND: Vascularized medial femoral condyle (MFC) bone graft is useful for pseudarthrosis and osteonecrosis, but has the risk of fracture as a complication. This study aimed to create multiple three-dimensional (3D) finite element (FE) femur models to biomechanically evaluate the fracture risk in the donor site of a vascularized MFC bone graft. METHODS: Computer tomography scans of the femurs of nine patients (four males and five females) with no left femur disease were enrolled in the study. A 3D FE model of the left femur was generated based on the CT images taken from the patients. The descending genicular artery (DGA), the main nutrient vessel in vascularized MFC bone grafts, divides into the proximal transversal branch (TB) and the distal longitudinal branch (LB) before entering the periosteum. Thirty-six different bone defect models with different sizes and locations of the harvested bone were created. RESULTS: The highest stress was observed in the proximal medial and metaphyseal portions under axial and external rotation, respectively. In the bone defect model, the stress was most elevated in the extracted region's anterior or posterior superior part. Stress increased depending on proximal location and harvested bone size. CONCLUSION: Increasing the size of the bone graft proximally raises the stress at the site of bone extraction. For bone grafting to non-load-bearing areas, bone grafting distally using LB can reduce fracture risk. If TB necessitates a larger proximal bone extraction, it is advisable to avoid postoperative rotational loads.


Subject(s)
Femur , Fractures, Bone , Male , Female , Humans , Finite Element Analysis , Femur/blood supply , Periosteum , Risk Assessment
12.
Int J Biol Macromol ; 263(Pt 2): 130371, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423439

ABSTRACT

The periosteum, a vascularized tissue membrane, is essential in bone regeneration following fractures and bone loss due to some other reasons, yet there exist several research gaps concerning its regeneration. These gaps encompass reduced cellular proliferation and bioactivity, potential toxicity, heightened stiffness of scaffold materials, unfavorable porosity, expensive materials and procedures, and suboptimal survivability or inappropriate degradation rates of the implanted materials. This research used an interdisciplinary approach by forming a new material fabricated through electrospinning for the proposed application as a layer-by-layer tissue-engineered periosteum (TEP). TEP comprises poly(ε-caprolactone) (PCL), PCL/gelatin/magnesium-doped zinc oxide (vascular layer), and gelatin/bioactive glass/COD liver oil (osteoconductive layer). These materials were selected for their diverse properties, when integrated into the scaffold formation, successfully mimic the characteristics of native periosteum. Scanning electron microscopy (SEM) was employed to confirm the trilayer structure of the scaffold and determine the average fiber diameter. In-vitro degradation and swelling studies demonstrated a uniform degradation rate that matches the typical recovery time of periosteum. The scaffold exhibited excellent mechanical properties comparable to natural periosteum. Furthermore, the sustained release kinetics of COD liver oil were observed in the trilayer scaffold. Cell culture results indicated that the three-dimensional topography of the scaffold promoted cell growth, proliferation, and attachment, confirming its non-toxicity, biocompatibility, and bioactivity. This study suggests that the fabricated scaffold holds promise as a potential artificial periosteum for treating periostitis and bone fractures.


Subject(s)
Gelatin , Tissue Scaffolds , Tissue Scaffolds/chemistry , Gelatin/chemistry , Periosteum , Biomimetics , Cod Liver Oil , Polyesters/chemistry , Tissue Engineering/methods
13.
Adv Healthc Mater ; 13(12): e2303134, 2024 May.
Article in English | MEDLINE | ID: mdl-38348511

ABSTRACT

The effective repair of large bone defects remains a major challenge due to its limited self-healing capacity. Inspired by the structure and function of the natural periosteum, an electrospun biomimetic periosteum is constructed to programmatically promote bone regeneration using natural bone healing mechanisms. The biomimetic periosteum is composed of a bilayer with an asymmetric structure in which an aligned electrospun poly(ε-caprolactone)/gelatin/deferoxamine (PCL/GEL/DFO) layer mimics the outer fibrous layer of the periosteum, while a random coaxial electrospun PCL/GEL/aspirin (ASP) shell and PCL/silicon nanoparticles (SiNPs) core layer mimics the inner cambial layer. The bilayer controls the release of ASP, DFO, and SiNPs to precisely regulate the inflammatory, angiogenic, and osteogenic phases of bone repair. The random coaxial inner layer can effectively antioxidize, promoting cell recruitment, proliferation, differentiation, and mineralization, while the aligned outer layer can promote angiogenesis and prevent fibroblast infiltration. In particular, different stages of bone repair are modulated in a rat skull defect model to achieve faster and better bone regeneration. The proposed biomimetic periosteum is expected to be a promising candidate for bone defect healing.


Subject(s)
Biomimetic Materials , Bone Regeneration , Periosteum , Polyesters , Bone Regeneration/drug effects , Animals , Periosteum/drug effects , Rats , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Polyesters/chemistry , Rats, Sprague-Dawley , Deferoxamine/pharmacology , Deferoxamine/chemistry , Gelatin/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/pharmacokinetics , Osteogenesis/drug effects , Skull/drug effects , Skull/injuries , Male , Nanoparticles/chemistry , Tissue Engineering/methods , Cell Differentiation/drug effects , Tissue Scaffolds/chemistry
14.
Compend Contin Educ Dent ; 45(2): 87-92, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38289626

ABSTRACT

Guided bone regeneration (GBR) requires a stable graft-membrane complex. This article presents a novel technique that uses membrane fixation screws to serve as anchors for membrane stabilization sutures without the need for periosteal dissection and biting of the buccoapical periosteum. This technique may be a viable alternative when there is a preference to avoid the complexities of periosteal suturing and direct membrane fixation using tacks or screws. The technique, which utilizes anchoring screws as mooring lines, can be used at the time of tooth extraction as well as for ridge augmentation of an edentulous site in preparation for future dental implant placement. Two case reports are presented that illustrate the feasibility of the technique, in which the integrity and stability of a resorbable membrane is preserved prior to final closure, suggesting that screws used as anchors for stabilization sutures might be a predictable option when addressing challenging horizontal defects requiring GBR.


Subject(s)
Mouth, Edentulous , Periosteum , Humans , Periosteum/surgery , Sutures , Bone Regeneration , Dental Care
15.
Graefes Arch Clin Exp Ophthalmol ; 262(2): 623-630, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37851132

ABSTRACT

PURPOSE: To evaluate demographics, characteristics, and management of pediatric patients with subperiosteal abscesses (SPA) secondary to orbital cellulitis and discuss the etiology of a dramatic rise in SPA. METHODS: Data were gathered by retrospective chart review of patients admitted to a tertiary referral eye hospital (Farabi Eye Hospital) diagnosed with orbital cellulitis with subperiosteal abscess from October 2022 to March 2023 (six months). Data on demographic information, clinical examination, radiographic evidence of sinusitis, orbital cellulitis, SPA, surgical and non-surgical management taken, isolated bacteria, and duration of hospital stay were gathered. RESULTS: 24 patients were admitted during these six months, with a diagnosis of orbital SPA secondary to paranasal sinusitis, confirmed by an orbital Computed Tomography (CT) scan. The age range was 11 months to 16 years. 75% of patients were male. All patients had a history of flu-like illness before developing orbital cellulitis. All patients had concurrent sinusitis, and 18 underwent initial surgical abscess drainage. The ethmoid sinus was the most involved, and most patients had a medially located SPA. Abscess volume ranged from 0.78 to 7.81 cm3 (mean: 3.52 cm3). One patient had concurrent central retinal artery occlusion due to orbital cellulitis. CONCLUSIONS: In this study, we report a dramatic increase in the incidence of SPA referred to our hospital. Larger abscess volumes and an increased number of cases that needed initial surgical drainage are also of note. An influenza outbreak in the autumn and winter, undiagnosed Corona Virus Disease 2019 (COVID-19) infection, increased antimicrobial resistance due to excessive off-label use of antibiotics during the COVID-19 pandemic, and more virulent bacterial infections are the most probable hypotheses to justify this observation.


Subject(s)
Orbital Cellulitis , Orbital Diseases , Sinusitis , Child , Humans , Male , Infant , Female , Orbital Cellulitis/diagnosis , Orbital Cellulitis/epidemiology , Orbital Cellulitis/therapy , Retrospective Studies , Abscess/diagnosis , Abscess/epidemiology , Abscess/therapy , Iran/epidemiology , Pandemics , Periosteum/microbiology , Sinusitis/complications , Sinusitis/diagnosis , Sinusitis/epidemiology , Disease Outbreaks , Anti-Bacterial Agents/therapeutic use , Orbital Diseases/diagnosis , Orbital Diseases/epidemiology , Orbital Diseases/therapy
16.
Adv Healthc Mater ; 13(3): e2302153, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922941

ABSTRACT

The periosteum plays a vital role in the regeneration of critical-size bone defects and highly comminuted fractures, promoting the differentiation of osteoblasts, accelerating the reconstruction of the vascular network, and guiding bone tissue regeneration. However, the materials loaded with exogenous growth factors are limited by the release and activity of the elements. Therefore, the material structure must be carefully designed for the periosteal function. Here, a self-adaptive biomimetic periosteum strategy is proposed, which is a novel interpenetrating double network hydrogel consisting of diselenide-containing gelatin and calcium alginate (modified natural collagen and polysaccharide) to enhance the stability, anti-swelling, and delayed degradation of the hydrogel. The diselenide bond continuously releases nitric oxide (NO) by metabolizing endogenous nitrosated thiols (RSNO), activates the nitric oxide-cycle guanosine monophosphate (NO-cGMP) signal pathway, coordinates the coupling effect of angiogenesis and osteogenesis, and accelerates the repair of bone defects. This self-adaptive biomimetic periosteum with the interpenetrating double network structure formed by the diselenide-containing gelatin and calcium alginate has been proven to be safe and effective in repairing critical-size bone defects and is expected to provide a promising strategy for solving clinical problems.


Subject(s)
Nitric Oxide , Periosteum , Periosteum/chemistry , Nitric Oxide/analysis , Gelatin/pharmacology , Gelatin/chemistry , Biomimetics , Angiogenesis , Bone Regeneration , Osteogenesis , Alginates , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering
17.
Bone ; 178: 116926, 2024 01.
Article in English | MEDLINE | ID: mdl-37793499

ABSTRACT

The periosteum plays a crucial role in bone healing and is an important source of skeletal stem and progenitor cells. Recent studies in mice indicate that diverse populations of skeletal progenitors contribute to growth, homeostasis and healing. Information about the in vivo identity and diversity of skeletal stem and progenitor cells in different compartments of the adult human skeleton is limited. In this study, we compared non-hematopoietic populations in matched tissues from the femoral head and neck of 21 human participants using spectral flow cytometry of freshly isolated cells. High-dimensional clustering analysis indicated significant differences in marker distribution between periosteum, articular cartilage, endosteum and bone marrow populations, and identified populations that were highly enriched or unique to specific tissues. Periosteum-enriched markers included CD90 and CD34. Articular cartilage, which has very poor regenerative potential, showed enrichment of multiple markers, including the PDPN+CD73+CD164+CD146- population previously reported to represent human skeletal stem cells. We further characterized periosteal populations by combining CD90 with other strongly expressed markers. CD90+CD34+ cells sorted directly from periosteum showed significant colony-forming unit fibroblasts (CFU-F) enrichment, rapid expansion, and consistent multi-lineage differentiation of clonal populations in vitro. In situ, CD90+CD34+ cells include a perivascular population in the outer layer of the periosteum and non-perivascular cells closer to the bone surface. CD90+ cells are also highly enriched for CFU-F in bone marrow and endosteum, but not articular cartilage. In conclusion, our study indicates considerable diversity in the non-hematopoietic cell populations in different tissue compartments within the adult human skeleton, and suggests that periosteal progenitor cells reside within the CD90+CD34+ population.


Subject(s)
Cell Adhesion Molecules , Stem Cells , Humans , Adult , Mice , Animals , Cell Differentiation , Antigens, CD34 , Biomarkers , Periosteum
18.
Chin J Dent Res ; 26(4): 227-233, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38126368

ABSTRACT

OBJECTIVE: To radiographically evaluate the effect of intact periosteum in guided bone regeneration (GBR) for the treatment of peri-implant ridge defects in posterior region. METHODS: Twenty-eight patients who satisfied the criteria were included in this study. Buccal dehiscence defects were regenerated using demineralised bovine bone mineral (DBBM). Subjects were divided into two groups: the control group (conventional GBR, buccal trapezoidal flap and DBBM with collagen membrane coverage, n = 14) and the test group (modified GBR, buccal pouch and DBBM with collagen membrane coverage, n = 14). CBCT images obtained immediately after and 3 to 7 months following GBR were used to assess buccal bone thickness (BBT) at a level of 0, 2, 4 and 6 mm below the implant platform. RESULTS: Immediately after surgery, BBT at 0 mm and 2 mm below the implant platform presented a significant difference between the two groups (P < 0.05) with significantly thicker buccal bone in the control group in terms of BBT-0 (3.83 ± 1.01 mm) and BBT-2 (4.88 ± 1.15 mm) than in the test group (2.33 ± 0.66 mm and 3.60 ± 1.10 mm, P = 0.000 and P = 0.008, respectively). After 3 to 7 months of healing, the BBT at all levels showed no significant difference between the two groups (P > 0.05), but more bone graft resorption (BBR) in the control group in terms of BBR-0 (2.45 ± 1.14 mm), BBR-2 (2.09 ± 0.94 mm) and BBR-0% (65.37% ± 26.62%) than the test group (BBR-0 1.07 ± 0.51 mm, P = 0.001; BBR-2, 1.22 ± 0.63 mm, P = 0.008; BBR-0% 45.70% ± 15.52%, P = 0.024). CONCLUSION: In the short term, all treatment modalities achieved similar coronal BBT and the intact periosteum had a positive effect on keeping ridge dimensions even.


Subject(s)
Alveolar Ridge Augmentation , Bone Resorption , Dental Implants , Humans , Animals , Cattle , Dental Implantation, Endosseous/methods , Cohort Studies , Retrospective Studies , Periosteum/surgery , Alveolar Ridge Augmentation/methods , Alveolar Process/diagnostic imaging , Alveolar Process/surgery , Bone Regeneration , Collagen , Bone Resorption/surgery
19.
Adv Sci (Weinh) ; 10(36): e2302874, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973554

ABSTRACT

Under diabetic conditions, blood glucose fluctuations and exacerbated immunopathological inflammatory environments pose significant challenges to periosteal regenerative repair strategies. Responsive immune regulation in damaged tissues is critical for the immune microenvironment, osteogenesis, and angiogenesis stabilization. Considering the high-glucose microenvironment of such acute injury sites, a functional glucose-responsive immunomodulation-assisted periosteal regeneration composite material-PLA(Polylactic Acid)/COLI(Collagen I)/Lipo(Liposome)-APY29 (PCLA)-is constructed. Aside from stimulating osteogenic differentiation, owing to the presence of surface self-assembled type I collagen in the scaffolds, PCLA can directly respond to focal area high-glucose microenvironments. The PCLA scaffolds trigger the release of APY29-loaded liposomes, shifting the macrophages toward the M2 phenotype, inhibiting the release of inflammatory cytokines, improving the bone immune microenvironment, and promoting osteogenic differentiation and angiogenesis. Bioinformatics analyses show that PCLA enhances bone repair by inhibiting the inflammatory signal pathway regulating the polarization direction and promoting osteogenic and angiogenic gene expression. In the calvarial periosteal defect model of diabetic rats, PCLA scaffolds induce M2 macrophage polarization and improve the inflammatory microenvironment, significantly accelerating periosteal repair. Overall, the PCLA scaffold material regulates immunity in fluctuating high-glucose inflammatory microenvironments, achieves relatively stable and favorable osteogenic microenvironments, and facilitates the effective design of functionalized biomaterials for bone regeneration therapy in patients with diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Osteogenesis , Rats , Humans , Animals , Periosteum , Tissue Scaffolds , Immunomodulation , Glucose
20.
Proc Natl Acad Sci U S A ; 120(46): e2312677120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37931101

ABSTRACT

We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.


Subject(s)
Osteogenesis , Stem Cell Niche , Mice , Animals , Cathepsin K/metabolism , Periosteum/metabolism , Cell Differentiation/genetics , Wnt Signaling Pathway , Proto-Oncogene Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...